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Abstract. In the context of this school on stellar physics with Gaia, I briefly present some basic tools
of theoretical Galactic dynamics, both in terms of the construction of equilibrium models and of linear
perturbation theory.
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1 Introduction

The Gaia mission (Gaia Collaboration et al. 2016) has been (and still is) an extraordinary milestone in offering
full six-dimensional phase-space information for a large number of stars of the Milky Way over a larger volume
than ever before (Gaia Collaboration et al. 2023). This offers a unique possibility to improve our dynamical
models of the Galaxy, which can serve as a laboratory for a plethora of unanswered questions in the field of
galaxy formation and evolution, for instance in terms of understanding the role of environment, the accretion
history, the nature of internal instabilities such as bars and spiral arms, or even test models for the nature (or
existence) of dark matter.

The most common typically “top-down” dynamical approach consists in generating ab initio simulations
of galaxies resembling the Milky Way in a cosmological context (e.g., Renaud et al. 2021). While extremely
valuable for understanding general features of galaxy formation, this method nevertheless lacks the flexibility
needed to create a model that precisely aligns with the vast and detailed data available for our own Galaxy.
The complementary “bottom-up” approach for dynamical modeling consists in starting from existing Galactic
data, and constructing a model from there rather than relying on simulations. In such a model, a single-particle
phase-space distribution function is used to represent all the different constituent particles, namely various
stellar populations and dark matter. Such model-building typically starts with the assumptions of dynamical
equilibrium and axisymmetry. These assumptions allow us to make use of Jeans’ theorem constraining the
distribution function to depend only on three integrals of motion, which can typically be chosen to be the radial,
azimuthal, and vertical action variables of the canonical action-angle phase-space coordinates. Such dynamical
models are however largely insufficient to describe our Galaxy, which is evident from its non-axisymmetric
nature featuring, e.g., a prominent central bar and spiral arms that have long been known to leave their imprint
in the phase-space structure of the Milky Way (e.g., Famaey et al. 2005). Additionally, recent insights from Gaia
have revealed a vertical disequilibrium of the Galactic disk (Antoja et al. 2018), possibly linked to a complex
interplay between external disturbances and internal non-axisymmetries (Li et al. 2023). This however does not
invalidate the usefulness of the approach, since all these effects can in principle be treated, to a certain extent,
through perturbation theory. In this short lecture, I lay out the general principles underlying this approach and
present a few recent results along the way.

2 Fundamental equations of Galactic Dynamics

The evolution of any N -particle system (with N being for instance the number of stars, or even of stars and dark
matter particles, in a galaxy) is characterized by the conservation of the probability distribution function (DF) in
a phase space of 6N dimensions, FN , according to Liouville’s theorem. This phase-space DF in 6N dimensions is
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strictly conserved along trajectories following the Hamiltonian flow of the system. The Bogoliubov (or BBGKY)
hierarchy then relates the n-particle (with n < N) DF to the n+1 DF. The single-particle phase space density
F1(x, v, t) (or just F (x, v, t) hereafter) is then related to the two-particle DF only through a correlation integral
term, which goes to zero in the large N and large relaxation time limit typical for gravity in galaxies (Binney &
Tremaine 2008). The single-particle DF then obeys the Vlasov (or collisionless Boltzmann) equation, expressing
conservation of particles in infinitesimal patches along the phase space trajectory {x(t), v(t)}. Coupled with the
equation for the gravitational potential Φ in the weak-field limit, namely Poisson’s equation, this leads to the
fundamental system of equations for Galactic dynamics (or at least, and more broadly, for collisionless stellar
dynamics), the Vlasov-Poisson system of equations:

{dF
dt = ∂F

∂t + v · ∂F
∂x − ∂Φ

∂x · ∂F
∂v = 0,

∇2Φ = 4πGρ = 4πG
∫
d3vF.

(1)

The single-particle Hamiltonian is simply written as H = v2

2 + Φ(x). Things become a bit more complicated
when including a gas component, but this is beyond the scope of the present lecture, and gas will typically be
treated as an external component to the Galactic gravitational potential Φ.

3 Equilibrium models

In a realistic axisymmetric and time-independent Galactic potential, the majority of orbits are regular or
quasi-regular, exhibiting quasiperiodic patterns in the sense that their Fourier transforms have only discrete
frequencies that are integer linear combinations of three fundamental frequencies. These orbits therefore possess
three isolating integrals of motion, which uniquely define them within the Galaxy’s gravitational potential. The
Liouville-Arnold theorem then states that if, in a Hamiltonian dynamical system with N degrees of freedom, there
are also N independent, Poisson commuting integrals of motion, then there exists a canonical transformation
to coordinates in which the transformed Hamiltonian is dependent only upon the new generalized momenta, and
their canonically conjugated variables evolve linearly in time. These are called the action-angle variables (J,Θ),
where the actions J (new generalized momenta) are integrals of the motion and the angles Θ evolve linearly
with time. Said otherwise, Hamilton’s equations simply become:

{dJ
dt = −∂H

∂Θ = 0,

dΘ
dt = ∂H

∂J = Ω(J).
(2)

According to Jeans’ theorem, the equilibrium stellar phase-space DF, F (x, v), for any Galaxy component should
then depend solely on the actions, F = F (J). While analytical relations between action-angles (J,Θ) and usual
phase-space coordinates (x, v) are seldom attainable for most potentials Φ, these variables present numerous
advantages: in an equilibrium configuration, the stars’ angles, Θ, are uniformly distributed on phase-space
orbital tori defined solely by J, and the phase-space density of stars, F (J)d3J, directly relates to the number
of stars dN in an infinitesimal action range, divided by (2π)3; additionally, the actions remain adiabatically
invariant during a gradual change in the Galactic potential; finally, as we shall see in the next section, these
variables serve as natural coordinates for perturbation theory. Notwithstanding the absence of an easy analytical
transformation for most potentials, in order to transform from actions and angles to positions and velocities,
one typically first expresses the Hamiltonian in the action-angle coordinates (JT ,ΘT ) of a toy potential, for
which the transformation to positions and velocities is fully known analytically (generally with an isochrone
potential). One then searches for a type 2 generating function G(ΘT , J) expressed as a Fourier series expansion
on the toy angles ΘT , for which the Fourier coefficients are such that the Hamiltonian remains constant at
constant J. This generating function fully defines the canonical transformation from actions and angles to
positions and velocities. This method is known as the ‘Torus mapping’ (McGill & Binney 1990). For the inverse
transformation, an estimate based on separable potentials can be used. These potentials are known as Stäckel
potentials (e.g. Famaey & Dejonghe 2003), for which each generalized momentum depends on its conjugated
position through three isolating integrals of the motion. These potentials are expressed in spheroidal coordinates
defined by a focal distance. For a Stäckel potential, this focal distance of the coordinate system is related to
the first and second derivatives of the potential. One can thus use the true potential at any configuration
space point to compute the equivalent focal distance as if the potential were of Stäckel form, and compute the
corresponding isolating integrals of the motion and the actions. This method is known as the Stäckel fudge.
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Both transformations are part of the Action-based Galaxy Modelling Architecture (AGAMA; Vasiliev 2019) code.
Other methods relying on unsupervised machine learning methods have also been developed (Ibata et al. 2021).

To construct an equilibrium model, one can then devise parametric DFs representing the different components
of the Galaxy. Typically, one can (i) start from a guess for the Galactic potential (already taking into account
some constraints such as the rotation curve, and including a gas surface density) and for the action-space DF
expressed as a linear combination of different components (young thin disk, intermediate-age thin disk, old
thin disk, thick disk, stellar halo, dark matter halo, bulge/fat disk in the central regions,...), (ii) compute the
configuration space density associated with this guess-DF when integrating it over velocity space, (iii) compute a
new Galaxy potential from this density with Poisson equation, (iv) take a weighted mean of this newly computed
potential and the original guess-potential, and iterate until convergence. This procedure ensures one to construct
a self-consistent equilibrium model. In principle, the likelihood of such a model can then be obtained on an
individual star-by-star basis in observables space (sky positions, parallaxes, proper motions from Gaia, radial
velocities from the RVS or ground-based surveys if available) taking into account the selection function, and the
whole parameter space can be explored fully. Interestingly, taking away the baryonic component also allows to
compute the shape of the dark matter halo without the contraction related to the presence of baryons, which
can give clues to the nature of dark matter. Such a titanesque procedure has however not been attempted
yet on the full Gaia dataset, but the closest to this endeavour has been achieved by Binney & Vasiliev (2023),
who presented a qualitative fit, and Binney & Vasiliev (2024) who fit a small subset of stars with APOGEE
spectroscopy, including an additional dependence on [Fe/H] and [Mg/Fe] in the DF. These models reveal in
detail the zeroth order orbital structure of our Galaxy in action space.

4 Perturbation theory

Such equilibrium axisymmetric models are however insufficient to describe the current phase-space structure
of the Galaxy, which has clear imprint of non-axisymmetries. Understanding these is particularly important
also in view of understanding the secular evolution of the Galaxy, whose main internal driving mechanisms
are instabilities leading to non-axisymmetric modes (bar, spiral arms). To take these into account, let us now
consider the influence of a small perturbation to the Hamiltonian,

∆H(x, t) = ψ(x, t) ≪ Φ. (3)
In action-angle coordinates, such a perturbing potential is 2π-periodic in the angles and can therefore typically
be written as a Fourier series over the angles

∆H(J,Θ, t) =
∑

n
∆Hn(J, t) exp(in.Θ) (4)

The total perturbed DF can then be expressed as F (J) + f(J,Θ) with the response DF, f ≪ F , obeying
the linearized collisionless Boltzmann equation, obtained by dropping all the high-order terms in the original
Vlasov equation:

∂f

∂t
+Ω · ∂f

∂Θ
− ∂F

∂J · ∂∆H

∂Θ
= 0. (5)

Expressing the response DF as a Fourier series over the angles,

f(J,Θ, t) =
∑

n
fn(J, t) exp(in.Θ), (6)

and assuming that the response is zero at t = 0, each Fourier coefficient is then:

fn(J, t) = in· ∂F
∂J

∫ t

0

dτ ∆Hn(J, τ) exp[−i n ·Ω (t− τ)]. (7)

Let us consider that the Fourier coefficients of the perturbing potential depend on time only through a logistic
function controlling the amplitude of the perturbation and through a periodic sinusoidal function of frequency
ωp, which can account for a perturbing potential of m-fold symmetry rotating with a fixed pattern speed
Ωp = −ωp/m. Then, at t = ∞, we have (e.g., Monari et al. 2016; Al Kazwini et al. 2022):

fn = ∆Hn
n.∂F∂J

n.Ω+ ωp
. (8)
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Knowing the perturbing potential, one can thus compute the response DF in this way. For instance, in Monari
et al. (2016), using the epicyclic approximation to get an analytic relation between the action-angle variables
and the positions and velocities, and considering a 3D spiral arm perturber with corotation in the outer Galaxy,
we showed that the first order moments of the perturbed DF describe “breathing” modes of the Galactic disc
in perfect accordance with simulations. But obviously the denominator in Equation 8 diverges at resonances
(problem of small divisors). This is due to the fact that, close to resonances, the orbital tori are radically modified
and the linear perturbation theory breaks down. It is however possible to circumvent this problem when only
one main perturber is at play: for each resonance, one can define a new set of actions and angles to describe
the orbits, through two consecutive canonical transformations in order to find the relevant action variables to
use in the resonant region (Monari et al. 2017). One can then populate the new tori by phase-averaging the
original unperturbed DF F (J) over these new resonant tori, which reproduces reasonably well what happens
in simulations. However, this method breaks down in the presence of multiple perturbing patterns because of
chaos related to resonance overlaps (Minchev & Famaey 2010), which have otherwise interesting consequences
in terms of secular evolution of the disk through their effect on heating and radial migration. Radial migration
can in turn be probed through the chemo-orbital distribution of equilibrium models (see previous section),
which in principle can help constrain the non-axisymmetric patterns driving it: for instance, the presence of
super-metal rich stars in the Solar neighborhood (Kordopatis et al. 2015) is a powerful chemo-orbital probe of
the effect of past spiral perturbations and their coupling with the bar. To circumvent the problem of resonance
overlaps in linear perturbation theory, one can resort to the backwards integration method originally developed
by Vauterin & Dejonghe (1997), based on the conservation of the DF in infinitesimal phase-space patches
following the Hamiltonian flow, encoded in the Vlasov equation. One can then compute the current DF F (x, v)
by integrating orbits backward in time to an axisymmetric equilibrium state F (J). Using this method, most
kinematic groups observed in the vicinity of the Sun can be reproduced with a multi-modal bar model (Monari
et al. 2019), but in regions beyond the Sun, the average radial velocity obtained from such a bar-only model
clearly indicates the necessary inclusion of spiral arms (Khalil et al. 2023). The challenge is, however, to recover
the velocity field measured with Gaia DR3 without destroying the already pretty satisfactory local velocity field
in the presence of the bar alone. This is work in progress, and should shed light on the present-day dynamical
structure (pattern speed etc.) of spiral arms in the Milky Way.

5 Self-consistency

In the previous section, I considered the response to a perturbation treated as an external one, even when
dealing with an internal one such as a spiral pattern or the bar. While this can catch some highly interesting
features of the response, especially relatively far away from the main density perturbation itself, it is not a
self-consistent procedure. For instance, it does not allow to follow self-consistently the growth and/or decay of
an instability, or to treat the self-consistent response of the Milky Way to an external perturber, for instance
to the Sgr dwarf or to the Large Magellanic Cloud (LMC), which are both influencing the current dynamical
state of the Galaxy.

For such an endeavour, the perturbation to the Hamiltonian considered in the previous section can be divided
into an external ψe and a self-consistent ψs internal part:

∆H(x, t) = ψe(x, t) + ψs(x, t). (9)

When considering an external perturber that can itself accelerate the reference frame of the Galaxy, which is
the case when considering an infalling LMC with a mass of 1.8 × 1011M⊙, one can also add to the perturbing
Hamiltonian a potential term accounting for a pseudo-force associated to this accelerated frame (Rozier et al.
2022). One can also consider as an “external” perturber some simple shot-noise perturbation to the disk, which
disappears quickly but lets the bar and spiral instabilities develop self-consistently as a consequence.

With a perturbation given by Equation 9, the solution to the linearized collisionless Boltzman equation is still
given at any time by Equations 6-7 hereabove, but now at each time one computes the response potential via the
integral of f over velocity space through Poisson’s equation, so that we can update the perturbing Hamiltonian
self-consistently. But now we have a problem: the linearized collisionless Boltzmann equation is best expressed
in action-angle phase-space coordinates, but we also need to solve the Poisson equation to get the potential
of the response, and the latter is best solved in configuration space coordinates, not actions and angles. One
can bypass this difficulty by resorting to Kalnajs trick (Kalnajs 1977): projecting everything on a bi-orthogonal
basis of potentials ψ(p) and densities ρ(p) that solve the Poisson equation once and for all. The choice of the
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bi-orthogonal basis obviously depends of the problem at hand. For instance, when computing the self-consistent
response of the dark and stellar halos to the LMC infall onto the Milky Way, one can simply choose spherical
harmonics multiplied by a radial component of Clutton-Brock form (Clutton-Brock 1972; Rozier et al. 2022).
Another basis must be used when treating the response of the Galactic disk.

The key aspect of a bi-orthogonal potential-density basis is that it obeys the bi-orthogonality condition:
∫
dxψ(p)(x) ρ(q)∗(x) = −δq

p, (10)

where ∗ indicates the complex conjugate while (p) and (q) stand for multiplets of indices, for instance in the
Clutton-Brock case triplets of indices (l,m, n), where l and m are just spherical harmonic degree and order,
and n is the radial order. Note that this inner product could be interpreted as proportional to the interaction
potential energy between two disturbances, which is thus zero between two distinct basis elements.

Now, in configuration space, the perturber and the self-consistent response can just be expressed as vectors
in this basis of potentials and densities, which we call vectors b(t) and a(t) respectively. Thanks to the bi-
orthogonality condition, in order to obtain the vector decomposition of the self-gravitating response, one just
needs to take the inner product of the perturbed density and each of the basis elements:

ap(t) = −
∫
dx
∫
dv f(x, v, t)ψ(p)∗(x), (11)

This can be canonically transformed into an integral over actions and angles, in which one simply needs to
insert the solution of the linearized collisionless Boltzmann equation for f , given by Equations 6-7. The solution
for ap(t) then simply becomes an integral over time, in which everything that depends on the background
state F (J) is absorbed into a “response matrix” that multiplies the vector b + a (see Rozier et al. 2022, for
details). As an example, one can for instance reconstruct the LMC with 3216 basis elements, and study the
response of an isotropic halo to its infall, in 20 timesteps over 2 Gyr (Rozier et al. 2022). Contrary to the
case of N -body simulations, here the system is still following orbits (and is still responding to the perturber)
between timesteps. An interesting aspect of the response matrix specific to non-rotating spheres is that there
is no coupling between different angular harmonics: each harmonic in the response is only induced by the
corresponding harmonic in the perturber, mediated by that same harmonic in the matrix. This allows one to
make a harmonic decomposition of the response for different halo anisotropies. In Rozier et al. (2022), we found
that the large scale over/underdensity induced by the LMC in the stellar halo corresponds to the l = 1 terms,
and is purely associated to the reflex motion: the underlying kinematics of the halo do not change this. What is
sensitive to the underlying kinematics of the stellar halo population one considers is the local wake around the
LMC. The response is much stronger in the case of a radially-biased halo. The orientation and winding of the
quadrupolar (m = 2) response is also very different. Importantly, the response of the stellar halo does not allow
to infer the presence of a particle-made dark matter halo. We also looked at the effect of the different Fourier
numbers in our Fourier decomposition to see which resonance dominates in different anisotropic cases. For a
radially anisotropic stellar halo, the inner Lindblad resonance dominates: in that case, instead of attracting
particles which can move with it, the LMC rather attracts orbits which can precess with it, the wake is relatively
slow, trails behind the LMC, and remains strong. For a tangentially anisotropic stellar halo, we found that the
corotation frequency dominates: the wake is then basically following the LMC and dissipates quickly as the
LMC moves inducing a weaker response. These insights on the dynamics at play can only be gotten from such
an analytical treatment, which is thus very complementary to simulations. Similar studies should, in the future,
be carried out on the response of the Galactic disk to its interaction with the Sgr dwarf, whose signature might
be partially encoded in the phase-spiral discovered in Gaia data.

6 Conclusions

Our Galaxy can serve as a laboratory to answer a plethora of yet unanswered questions in the field of galaxy
formation and evolution. In this brief presentation, I outlined the basics of theoretical/analytical Galactic
dynamics, both in terms of the construction of equilibrium models and of linear perturbation theory, which
are very powerful tools to dissect the dynamical mechanisms at play (which are often difficult to disentangle in
numerical simulations), and are in this sense highly complementary to numerical simulations of galaxy formation
in a cosmological context. I also gave a few examples of recent results using such tools. Constructing equilibrium
models reveals the zeroth order axisymmetric orbital structure of the Galaxy, and can be coupled with a chemical
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decomposition to reveal the formation history of its different stellar components. This chemical decomposition
of phase-space already reveals that the disk of the Galaxy is constantly reshuffling its orbits under internal
secular evolution processes, such as stellar radial migration, driven by non-axisymmetric (short-lived and/or
long-lived) modes and their respective couplings. Understanding the exact nature of spiral arms and of their
role in the secular evolution of the Galaxy has remained a surprisingly pressing challenge for several decades,
and a chemo-orbital analysis of stars of the Milky Way is a powerful probe to advance on this question. Gaia
data, complemented by ground-based spectroscopic surveys, have also revealed a present-day highly complex
picture of our Galaxy, both affected by internal instabilities (spirals, bar) and external perturbations (LMC,
Sgr dwarf). Here again, dynamical modeling and linear perturbation theory are powerful complementary tools
to numerical simulations in order to disentangle the various effects at play, and reconstruct past events such
as the Gaia-Sausage-Enceladus merger. Some of these effects at play (possible slow-down of the rotation of
the Galactic bar, dynamical friction on the Sgr dwarf) also involve – in principle – interactions of the stellar
components of the Galaxy with the dark matter halo, providing a potentially powerful probe of the nature of
dark matter. More generally, dynamical modeling can probe the shape and substructure of the putative dark
matter halo, and compare it with expectations from the standard ΛCDM model and in alternative frameworks.
Regarding the formation history of the Galaxy, many questions still remain unanswered too, related to, e.g., the
origin of the chemical thick disk, or the nature of the disk-halo interface. For these questions, the tools presented
here complemented by future better and higher resolution measurements of stellar chemical abundances and of
more precise stellar ages (e.g., Miglio et al. 2017) should allow us to be confident that the complex formation
history of our Milky Way will be revealed in full in the coming decades.
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