# The Gaia's "living and breathing" Milky Way

#### Alejandra Recio-Blanco Observatoire de la Côte d'Azur (Lab. Lagrange)







Gaia stellar populations

- The Gaia revolution on Galactic stellar populations and its keys
- 2. The chemical cartography of the Milky Way
- 3. Gaia: "*Mesdames et messieurs, the stellar populations*"
  - Disc structure and chemical gradients
  - Disc kinematic disturbances
  - Halo populations





Gaia stellar populations

 The Gaia revolution on Galactic stellar populations and its keys









• Parallaxes: the depth of the sky...

#### **Stellar parallaxes**

**Stellar positions** 



Stars lay at large, but finite distances!



 (We have) lived to see the day when the sounding line in the Universe of stars had at last touched bottom »
 J. Herschel (President of the British Royal Astronomical Society, ~1840)

- Parallaxes: the depth of the sky...
- Number statistics: 1.8 billion stars (astrometry+photometry) 33 million stars (spectroscopy) Nb increasing!











Gaia Collaboration, Montegriffo et al. 2022







- Parallaxes: the depth of the sky...
- Number statistics: 1.8 billion stars (astrometry+photometry) 33 million stars (spectroscopy) Nb increasing!
- Precise stellar parameters: space observations (no Earth's atmosphere) extremely good control of systematics

#### Gaia/RVS is **SPACE spectroscopy ±** ground based spectroscopy



Parametrization quality comparable to groundbased surveys of higher spectral resolution and wavelength coverage.





#### Recio-Blanco et al. 2022

- Parallaxes: the depth of the sky...
- Number statistics: 1.8 billion stars (astrometry+photometry) 33 million stars (spectroscopy) Nb increasing!
- **Precise stellar parameters:** space observations (no Earth's atmosphere) extremely good control of systematics
- Time-series (continuous observations for years): evolution!
  - Proper motions







çesa gaia

Gaia EDR3: 1.8 milion stars with astrometric solutions

- Parallaxes: the depth of the sky...
- Number statistics: 1.8 billion stars (astrometry+photometry) 33 million stars (spectroscopy) Nb increasing!
- **Precise stellar parameters:** space observations (no Earth's atmosphere) extremely good control of systematics
- Time-series (continuous observations for years): evolution!
  - Proper motions
  - Solar System acceleration



- Parallaxes: the depth of the sky...
- Number statistics: 1.8 billion stars (astrometry+photometry) 33 million stars (spectroscopy) Nb increasing!
- **Precise stellar parameters:** space observations (no Earth's atmosphere) extremely good control of systematics
- Time-series (continuous observations for years): evolution!
  - Proper motions
  - Solar System acceleration
  - Stellar variability





- Parallaxes: the depth of the sky...
- Number statistics: 1.8 billion stars (astrometry+photometry) 33 million stars (spectroscopy) Nb increasing!
- **Precise stellar parameters:** space observations (no Earth's atmosphere) extremely good control of systematics
- Time-series (continuous observations for years): evolution!
  - Proper motions
  - Solar System acceleration
  - Stellar variability
  - Binaries and their orbital solutions

ASTROMETRIC BINARIES WITHIN 50PC Gaia Collaboration, Arénou et al. 2022 • • • • • • • • • • • • • *◎ ሬ •∽* ● *//* ♥○ ▲ ● ● � *●* ● ● ۲ ~· / ~ QQ · / O · / · / • 🖍 🖉 📍 🛥 • • 💊 💊 🖢 🔸 📍 🎍 🖉 N 0 • • • • • • • • • • • • • • • • • ● ☜ ● � ↓ ● ● ● � ♀ ↓ ● ▲ ● ♪ ╲╸▾◯ ● ຼ ፩ । Ở ସ ସ • / / / () 9 🕥 🔹 🥢 🔹 👁 🔹 🖕 🖉 🛩 • 🖓 🐧 🏹 ۵ • 👌 🖚 • 🕥 • • 💭 • • 👁 🔮 🐐 • ¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

¶ 

<p 0 • 🐨 🖉 🖉 ( ) 🖉 🖉 ( ) • • 📿 • • • • • • • • • • • • • • • • ) 🔹 🔹 0 CU4/NSS - Cycle 4 plans

- Parallaxes: the depth of the sky...
- Number statistics: 1.8 billion stars (astrometry+photometry) 33 million stars (spectroscopy) Nb increasing!
- **Precise stellar parameters:** space observations (no Earth's atmosphere) extremely good control of systematics
- Time-series (continuous observations for years): evolution!
  - Proper motions
  - Solar System acceleration
  - Stellar variability
  - Binaries and their orbital solutions
- Chemical composition of matter



A. Recio-Blanco

#### Gaia stellar populations

- 1. The Gaia revolution on Galactic stellar populations and its keys
- 2. The chemical cartography of the Milky Way





Vincent Van Gogh (1888)

To.

----

\*

10

Vincent Van Gogh (1888)

DSS image

Vincent Van Gogh (1888)

#### SPECTRUM . BAURIGÆ.

1889, DEC. 30ª 17:6 G.M.T.

### Henry Drapper Memorial work at the Harvard of Observatory (1889)

**DSS** image

Angelo Secchi



WilliamMargaretHugginsLindsay Huggins



Antonia Maury



Annie Jump Cannon



# Spectroscopy

#### The Harvard computers



# Spectroscopy



# CARTE PHOTOGRAPHIQUE DU CIEL Position du centre pour 1900 $\begin{cases} R = 12^{h_48m} \\ D = + 20^{\circ} \end{cases}$

Zone +20° N° 97

Observatoire de Paris

| 60    | 55 8 | 5.0     | 45 4 | 0 | 35 + 3                                  | 30 3    | 25 2 | 2.0 | 15 | 10 | ABSC | USSE'S | 6     | 10 | 16 2 | 0 3 | 5 5 | 20 - 3 | 5        | 0  | .5 0 | 50 6       | 56 0 | 2.0 |
|-------|------|---------|------|---|-----------------------------------------|---------|------|-----|----|----|------|--------|-------|----|------|-----|-----|--------|----------|----|------|------------|------|-----|
|       |      |         | -    |   |                                         |         |      |     |    |    |      |        |       |    |      |     |     |        |          | +0 |      |            |      |     |
|       |      |         |      |   | •                                       |         |      |     |    |    |      |        |       |    |      |     |     |        |          |    |      |            |      |     |
| 1     |      | •       | A    |   |                                         | * · · · |      |     |    |    |      |        |       | •  |      |     |     | -      |          |    |      |            |      |     |
| <br>* |      |         |      |   |                                         |         |      |     |    |    |      |        |       |    |      |     |     |        |          |    |      |            |      |     |
|       |      | 4<br>13 |      |   | . <b>.</b>                              |         |      |     |    |    | 2.4  |        |       |    |      |     |     |        |          | Δ  |      |            |      |     |
|       |      |         |      |   | •                                       |         |      |     | A  |    |      |        |       | A  | •    |     |     |        |          |    |      |            |      |     |
|       |      |         |      |   |                                         |         |      |     |    |    |      |        |       |    |      |     |     |        |          |    |      |            | . 0  |     |
|       |      |         | -    | 2 |                                         |         |      |     |    |    | •    |        |       |    |      |     |     |        |          |    |      | 1 <b>.</b> |      |     |
|       |      |         |      |   | *                                       |         |      |     |    |    | •    |        |       |    |      |     | *   |        | <u>+</u> |    |      | •          |      |     |
| -     |      |         |      |   | •                                       |         |      |     |    |    |      |        |       |    |      | •   |     |        |          |    |      |            |      |     |
|       |      |         |      |   |                                         |         |      |     |    |    |      |        |       |    |      |     |     |        |          | 1  |      |            | A    |     |
|       |      |         |      |   |                                         |         |      |     |    |    | 6    |        |       |    | •    |     |     |        |          |    | *    | h          | A    |     |
|       | A    | * *     |      |   | ۸ · · · · · · · · · · · · · · · · · · · |         |      |     |    |    |      |        |       |    |      |     |     |        |          |    | •    | •          |      |     |
|       |      |         |      |   |                                         |         |      | •   | •  |    |      |        |       |    |      |     | •   |        |          |    |      |            |      |     |
|       |      |         |      |   |                                         | •       |      | •   |    |    |      |        |       |    |      |     |     |        |          |    |      |            |      |     |
|       |      |         |      |   |                                         |         |      | 1   |    |    |      |        | · · · |    | *    |     |     |        |          |    |      |            |      |     |

# **Atomic Physics**

# Spectroscopy

- Stellar physical parameters
- Chemical composition
- Line-of-sight velocity -> 3D motions



Cecilia Payne

George Gamow

Hans Bethe

Margaret Burbidge

# **Atomic Physics**

# Spectroscopy



- Stellar physical parameters
- Chemical composition
- Line-of-sight velocity -> 3D motions







Gaia revolutions: roots and keys

Gaia combines the **astrometric** approach of **classical astronomy** with the **physical** approach of **modern astrophysics**. This is enhanced by:

- High number statistics
- High precision
- Time series observations

Detailed evolution of the Galaxy in its environment





#### Gaia/RVS: a space spectroscopic survey





#### Gaia/RVS: a space spectroscopic survey



CU8/GSPspec: The chemical composition of 5.6 million stars

#### **Apsis DPAC/CU8 pipeline**



GSPspec (Recio-Blanco et al. 2023) is an up-stream module of the Astrophysical parameters inference system (Creevey et al. 2023)

Treats RVS stacked spectra produced by DPAC/CU6 (Katz et al. 2023)
# Gaia/RVS/GSPspec GSPspec (Recio-Blanco et al. 2023)



#### AstrophysicalParameters table in the Gaia Archive

Atmospheric Parameters Individual chemical abundances Differential CN EW Diffuse Interstellar Band parameters

DR3 operations at DPCC (CNES-Toulouse) 6.9 million spectra treated 50 MC realisations of each RVS spectrum -> APs uncertainties 110 000 h spread on 2100 cores Execution time= 150h One second per spectrum



 $T_{\text{eff}}$  log g, [M/H], [ $\alpha/Fe$ ], abundances, DIB and CN parameters with statistics (median, upper and lower confidence values)

# Inside the GSPSpec module: MatisseGauguin workflow (parameters)





Gaia/RVS: a model driven success

MATISSE: Recio-Blanco et al. 2006
Projection method. Local multilinear regression



# Inside the GSPSpec module: MatisseGauguin workflow (abundances)





## Gaia/RVS: a model driven success

GAUGUIN : Bijaoui, Recio-Blanco et al. 2012
Optimization method. Gauss-Newton algorithm
Linearization around a parameter set Θ associated to a theoretical spectrum S<sub>0</sub>. Corrections obtained with:



GAUGUIN is used both for the atmospheric parameters and the chemical abundances

Used after MATISSE -> atmospheric parameters Used alone -> individual chemical abundances

# Inside the GSPSpec module: MatisseGauguin workflow (errors)

Error propagation through **50 random realisations** of the input spectra using its error $\rightarrow$  Loop over MatisseGauguin



When finished, perform statistics, line combination, flags...





### Synthetic spectra GRIDS:

MARCS atm. Models + Turbospectrum



33 lines selected after several quality evaluation test and inspection See Recio-Blanco et al. 2023 and Contursi et al. 2021

| Elt   | λ       | $\lambda_{ab}^{-}$ | $\lambda_{ab}^+$ | $\lambda_{norm}^{-}$ | $\lambda_{norm}^+$ |
|-------|---------|--------------------|------------------|----------------------|--------------------|
| NI    | 863.161 | 863.071            | 863.281          | 862.891              | 863.371            |
| NI    | 868.579 | 868.489            | 868.699          | 868.309              | 868.939            |
| Mg I  | 847.602 | 847.512            | 847.692          | 847.212              | 847.812            |
| Si I  | 853.851 | 853.731            | 853.941          | 853.371              | 854.961            |
| *Si ı | 855.916 | 855.856            | 856.036          | 855.376              | 856.156            |
| Si 1  | 868.872 | 868.782            | 868.992          | 868.602              | 869.232            |
| *Ѕ і  | 867.258 | 866.988            | 867.378          | 866.898              | 867.998            |
| *Ѕ і  | 869.701 | 869.551            | 869.821          | 869.281              | 869.971            |
| Сал   | 863.631 | 863.511            | 863.691          | 863.361              | 863.931            |
| Сап   | 849.856 | 849.706            | 849.976          | 849.586              | 850.276            |
| Сап   | 850.216 | 850.156            | 850.276          | 849.886              | 850.306            |
| Сап   | 854.264 | 854.114            | 854.384          | 853.544              | 854.864            |
| Сап   | 854.624 | 854.564            | 854.744          | 854.294              | 854.804            |
| Сап   | 866.272 | 866.152            | 866.332          | 866.002              | 866.572            |
| Са п  | 866.632 | 866.512            | 866.692          | 866.302              | 866.782            |
| *Ti ı | 852.069 | 851.979            | 852.129          | 851.799              | 852.249            |
| Ті 1  | 857.209 | 857.119            | 857.269          | 856.999              | 857.359            |
| Ті і  | 869.472 | 869.382            | 869.562          | 869.292              | 869.832            |
| Cr I  | 855.118 | 855.058            | 855.208          | 854.878              | 855.478            |
| Cr I  | 864.567 | 864.447            | 864.627          | 864.207              | 864.867            |
| *Fe I | 848.296 | 848.206            | 848.446          | 847.666              | 848.896            |
| *Fe 1 | 851.641 | 851.551            | 851.851          | 851.281              | 852.001            |
| *Fe I | 852.901 | 852.691            | 853.081          | 852.481              | 853.321            |
| Fe I  | 857.416 | 857.296            | 857.506          | 856.876              | 858.166            |
| Fe I  | 858.462 | 858.312            | 858.612          | 858.132              | 858.762            |
| Fe I  | 862.397 | 862.277            | 862.517          | 862.127              | 862.697            |
| Fe I  | 867.713 | 867.593            | 867.863          | 867.443              | 868.013            |
| *Fe I | 869.101 | 868.891            | 869.191          | 868.441              | 869.821            |
| Fe п  | 858.794 | 858.764            | 858.824          | 858.254              | 859.274            |
| Ni 1  | 863.937 | 863.847            | 864.027          | 863.697              | 864.147            |
| Zr II | 852.748 | 852.658            | 852.838          | 852.388              | 853.018            |
| *Се п | 851.375 | 851.285            | 851.465          | 851.015              | 851.555            |
| Nd II | 859.389 | 859.299            | 859.479          | 859.209              | 859.689            |

### Each line has its own window for an additional normalisation (see Santos-Peral et al. 2020)

| Elt   | λ       | $\lambda_{ab}^{-}$ | $\lambda_{ab}^+$ | $\lambda_{norm}^{-}$ | $\lambda_{norm}^+$ |
|-------|---------|--------------------|------------------|----------------------|--------------------|
| NI    | 863.161 | 863.071            | 863.281          | 862.891              | 863.371            |
| Νı    | 868.579 | 868.489            | 868.699          | 868.309              | 868.939            |
| Mg I  | 847.602 | 847.512            | 847.692          | 847.212              | 847.812            |
| Si 1  | 853.851 | 853.731            | 853.941          | 853.371              | 854.961            |
| *Si 1 | 855.916 | 855.856            | 856.036          | 855.376              | 856.156            |
| Si 1  | 868.872 | 868.782            | 868.992          | 868.602              | 869.232            |
| *S 1  | 867.258 | 866.988            | 867.378          | 866.898              | 867.998            |
| *S 1  | 869.701 | 869.551            | 869.821          | 869.281              | 869.971            |
| Сат   | 863.631 | 863.511            | 863.691          | 863.361              | 863.931            |
| Сап   | 849.856 | 849.706            | 849.976          | 849.586              | 850.276            |
| Сап   | 850.216 | 850.156            | 850.276          | 849.886              | 850.306            |
| Сап   | 854.264 | 854.114            | 854.384          | 853.544              | 854.864            |
| Сап   | 854.624 | 854.564            | 854.744          | 854.294              | 854.804            |
| Сап   | 866.272 | 866.152            | 866.332          | 866.002              | 866.572            |
| Сап   | 866.632 | 866.512            | 866.692          | 866.302              | 866.782            |
| *Ti ı | 852.069 | 851.979            | 852.129          | 851.799              | 852.249            |
| Ті г  | 857.209 | 857.119            | 857.269          | 856.999              | 857.359            |
| Ті 1  | 869.472 | 869.382            | 869.562          | 869.292              | 869.832            |
| Cr I  | 855.118 | 855.058            | 855.208          | 854.878              | 855.478            |
| Cr I  | 864.567 | 864.447            | 864.627          | 864.207              | 864.867            |
| *Fe I | 848.296 | 848.206            | 848.446          | 847.666              | 848.896            |
| *Fe I | 851.641 | 851.551            | 851.851          | 851.281              | 852.001            |
| *Fe I | 852.901 | 852.691            | 853.081          | 852.481              | 853.321            |
| Fe I  | 857.416 | 857.296            | 857.506          | 856.876              | 858.166            |
| Fe I  | 858.462 | 858.312            | 858.612          | 858.132              | 858.762            |
| Fe I  | 862.397 | 862.277            | 862.517          | 862.127              | 862.697            |
| Fe 1  | 867.713 | 867.593            | 867.863          | 867.443              | 868.013            |
| *Fe 1 | 869.101 | 868.891            | 869.191          | 868.441              | 869.821            |
| Fe п  | 858.794 | 858.764            | 858.824          | 858.254              | 859.274            |
| Ni 1  | 863.937 | 863.847            | 864.027          | 863.697              | 864.147            |
| Zr II | 852.748 | 852.658            | 852.838          | 852.388              | 853.018            |
| *Се п | 851.375 | 851.285            | 851.465          | 851.015              | 851.555            |
| Nd п  | 859.389 | 859.299            | 859.479          | 859.209              | 859.689            |
| L     |         |                    | ·                |                      |                    |

Also, each line has a different abundance determination window depending on the blends, presence of other lines...

| Elt   | λ       | $\lambda_{ab}^{-}$ | $\lambda_{ab}^+$ | $\lambda_{norm}^{-}$ | $\lambda_{norm}^+$ |
|-------|---------|--------------------|------------------|----------------------|--------------------|
| Νı    | 863.161 | 863.071            | 863.281          | 362.891              | 863.371            |
| Νı    | 868.579 | 868.489            | 868.699          | 368.309              | 868.939            |
| Mg I  | 847.602 | 847.512            | 847.692          | 347.212              | 847.812            |
| Si 1  | 853.851 | 853.731            | 853.941          | 353.371              | 854.961            |
| *Si 1 | 855.916 | 855.856            | 856.036          | 355.376              | 856.156            |
| Si 1  | 868.872 | 868.782            | 868.992          | 368.602              | 869.232            |
| *S 1  | 867.258 | 866.988            | 867.378          | 366.898              | 867.998            |
| *S 1  | 869.701 | 869.551            | 869.821          | 369.281              | 869.971            |
| Сат   | 863.631 | 863.511            | 863.691          | 863.361              | 863.931            |
| Сап   | 849.856 | 849.706            | 849.976          | 349.586              | 850.276            |
| Сап   | 850.216 | 850.156            | 850.276          | 349.886              | 850.306            |
| Сап   | 854.264 | 854.114            | 854.384          | 353.544              | 854.864            |
| Сап   | 854.624 | 854.564            | 854.744          | 354.294              | 854.804            |
| Сап   | 866.272 | 866.152            | 866.332          | 366.002              | 866.572            |
| Сап   | 866.632 | 866.512            | 866.692          | 366.302              | 866.782            |
| *Ti ı | 852.069 | 851.979            | 852.129          | 351.799              | 852.249            |
| Ti 1  | 857.209 | 857.119            | 857.269          | 356.999              | 857.359            |
| Ti 1  | 869.472 | 869.382            | 869.562          | 369.292              | 869.832            |
| Crı   | 855.118 | 855.058            | 855.208          | 354.878              | 855.478            |
| Cr I  | 864.567 | 864.447            | 864.627          | 364.207              | 864.867            |
| *Fe I | 848.296 | 848.206            | 848.446          | 347.666              | 848.896            |
| *Fe 1 | 851.641 | 851.551            | 851.851          | 351.281              | 852.001            |
| *Fe 1 | 852.901 | 852.691            | 853.081          | 352.481              | 853.321            |
| Fe 1  | 857.416 | 857.296            | 857.506          | 356.876              | 858.166            |
| Fe 1  | 858.462 | 858.312            | 858.612          | 358.132              | 858.762            |
| Fe 1  | 862.397 | 862.277            | 862.517          | 862.127              | 862.697            |
| Fe 1  | 867.713 | 867.593            | 867.863          | 367.443              | 868.013            |
| *Fe 1 | 869.101 | 868.891            | 869.191          | 368.441              | 869.821            |
| Fe п  | 858.794 | 858.764            | 858.824          | 358.254              | 859.274            |
| Ni 1  | 863.937 | 863.847            | 864.027          | 863.697              | 864.147            |
| Zr II | 852.748 | 852.658            | 852.838          | 352.388              | 853.018            |
| *Се п | 851.375 | 851.285            | 851.465          | 351.015              | 851.555            |
| Nd п  | 859.389 | 859.299            | 859.479          | 359.209              | 859.689            |

Calcium triplet is special: abundance measurement looking at the "wings"

|   | Elt   | λ       | $\lambda_{ab}^{-}$ | $\lambda_{ab}^+$ | $\lambda_{norm}^{-}$ | $\lambda_{norm}^+$ |  |
|---|-------|---------|--------------------|------------------|----------------------|--------------------|--|
|   | NI    | 863.161 | 863.071            | 863.281          | 862.891              | 863.371            |  |
|   | Νı    | 868.579 | 868.489            | 868.699          | 868.309              | 868.939            |  |
|   | Mg I  | 847.602 | 847.512            | 847.692          | 847.212              | 847.812            |  |
|   | Si 1  | 853.851 | 853.731            | 853.941          | 853.371              | 854.961            |  |
|   | *Si 1 | 855.916 | 855.856            | 856.036          | 855.376              | 856.156            |  |
|   | Si 1  | 868.872 | 868.782            | 868.992          | 868.602              | 869.232            |  |
|   | *S 1  | 867.258 | 866.988            | 867.378          | 866.898              | 867.998            |  |
|   | *S 1  | 869.701 | 869.551            | 869.821          | 869.281              | 869.971            |  |
| - | Car   | 062.621 | 062.511            | 863.691          | 062.261              | 863.931            |  |
|   | Сап   | 849.856 | 849.706            | 849.976          | 849.586              | 850.276            |  |
|   | Сап   | 850.216 | 850.156            | 850.276          | 849.886              | 850.306            |  |
|   | Сап   | 854.264 | 854.114            | 854.384          | 853.544              | 854.864            |  |
|   | Сап   | 854.624 | 854.564            | 854.744          | 854.294              | 854.804            |  |
|   | Сап   | 866.272 | 866.152            | 866.332          | 866.002              | 866.572            |  |
|   | Сап   | 866.632 | 866.512            | 866.692          | 866.302              | 866.782            |  |
| _ | *T:   | 852.069 | 851.979            | 852.129          | 851.799              | 852.249            |  |
|   | Ті і  | 857.209 | 857.119            | 857.269          | 856.999              | 857.359            |  |
|   | Ті 1  | 869.472 | 869.382            | 869.562          | 869.292              | 869.832            |  |
|   | Cr I  | 855.118 | 855.058            | 855.208          | 854.878              | 855.478            |  |
|   | Cr I  | 864.567 | 864.447            | 864.627          | 864.207              | 864.867            |  |
|   | *Fe I | 848.296 | 848.206            | 848.446          | 847.666              | 848.896            |  |
|   | *Fe 1 | 851.641 | 851.551            | 851.851          | 851.281              | 852.001            |  |
|   | *Fe I | 852.901 | 852.691            | 853.081          | 852.481              | 853.321            |  |
|   | Fe I  | 857.416 | 857.296            | 857.506          | 856.876              | 858.166            |  |
|   | Fe I  | 858.462 | 858.312            | 858.612          | 858.132              | 858.762            |  |
|   | Fe I  | 862.397 | 862.277            | 862.517          | 862.127              | 862.697            |  |
|   | Fe I  | 867.713 | 867.593            | 867.863          | 867.443              | 868.013            |  |
|   | *Fe 1 | 869.101 | 868.891            | 869.191          | 868.441              | 869.821            |  |
|   | Feп   | 858.794 | 858.764            | 858.824          | 858.254              | 859.274            |  |
|   | Ni 1  | 863.937 | 863.847            | 864.027          | 863.697              | 864.147            |  |
|   | Zr II | 852.748 | 852.658            | 852.838          | 852.388              | 853.018            |  |
|   | *Се п | 851.375 | 851.285            | 851.465          | 851.015              | 851.555            |  |
|   | Nd п  | 859.389 | 859.299            | 859.479          | 859.209              | 859.689            |  |

|                                               | Flt          | λ       | 2-                       | λ+                       | 2-      | <b>)</b> + |
|-----------------------------------------------|--------------|---------|--------------------------|--------------------------|---------|------------|
|                                               |              | 863 161 | $\frac{n_{ab}}{863.071}$ | $\frac{n_{ab}}{863,281}$ | 862 801 | 863 371    |
|                                               | NI           | 868 579 | 868 489                  | 868 699                  | 868 309 | 868 939    |
|                                               | Mgi          | 847 602 | 847 512                  | 847 692                  | 847.212 | 847 812    |
|                                               | Si           | 853.851 | 853,731                  | 853.941                  | 853.371 | 854.961    |
|                                               | <b>√</b> Si⊥ | 855.916 | 855.856                  | 856.036                  | 855.376 | 856.156    |
| Atomic lines.                                 | Siı          | 868.872 | 868.782                  | 868.992                  | 868.602 | 869.232    |
| Atomic lines:                                 | *S 1         | 867.258 | 866.988                  | 867.378                  | 866.898 | 867.998    |
|                                               | *S 1         | 869.701 | 869.551                  | 869.821                  | 869.281 | 869.971    |
|                                               | Сал          | 863.631 | 863.511                  | 863.691                  | 863.361 | 863.931    |
|                                               | Сап          | 849.856 | 849.706                  | 849.976                  | 849.586 | 850.276    |
| Some doublets/triplets or consecutive lines   | Сап          | 850.216 | 850.156                  | 850.276                  | 849.886 | 850.306    |
|                                               | Сап          | 854.264 | 854.114                  | 854.384                  | 853.544 | 854.864    |
| of the same element are treated as a          | Са п         | 854.624 | 854.564                  | 854.744                  | 854.294 | 854.804    |
|                                               | Са п         | 866.272 | 866.152                  | 866.332                  | 866.002 | 866.572    |
| unique line.                                  | Сап          | 866.632 | 866.512                  | 866.692                  | 866.302 | 866.782    |
| (but the individual line cases have also been | Ti I         | 852.069 | 851.979                  | 852.129                  | 851.799 | 852.249    |
| (but the individual line cases have also been | Ti I         | 857.209 | 857.119                  | 857.269                  | 856.999 | 857.359    |
| tostad)                                       | Ті і         | 869.472 | 869.382                  | 869.562                  | 869.292 | 869.832    |
| lesleu)                                       | Cr I         | 855.118 | 855.058                  | 855.208                  | 854.878 | 855.478    |
|                                               | Cr I         | 864.567 | 864.447                  | 864.627                  | 864.207 | 864.867    |
|                                               | *Fe I        | 848.296 | 848.206                  | 848.446                  | 847.666 | 848.896    |
|                                               | *Fe I        | 851.641 | 851.551                  | 851.851                  | 851.281 | 852.001    |
|                                               | *Fe I        | 852.901 | 852.691                  | 853.081                  | 852.481 | 853.321    |
|                                               | Fe I         | 857.416 | 857.296                  | 857.506                  | 856.876 | 858.166    |
|                                               | Fei          | 858.462 | 858.312                  | 858.612                  | 858.132 | 858.762    |
|                                               | Fei          | 862.397 | 862.277                  | 862.517                  | 862.127 | 862.697    |
|                                               | Fe I         | 867.713 | 867.593                  | 867.863                  | 867.443 | 868.013    |
|                                               | *Fe I        | 869.101 | 868.891                  | 869.191                  | 868.441 | 869.821    |
|                                               | <u> Ре п</u> | 858.794 | 858.764                  | 858.824                  | 858.254 | 859.274    |
|                                               | N1 I         | 863.937 | 863.847                  | 864.027                  | 863.697 | 864.147    |
|                                               |              | 852.748 | 852.658                  | 852.838                  | 852.388 | 853.018    |
|                                               | *Се п        | 851.375 | 851.285                  | 851.465                  | 851.015 | 851.555    |
|                                               | Nd II        | 859.389 | 859.299                  | 859.479                  | 859.209 | 859.689    |



CU8/GSPspec: The chemical composition of 5.6 million stars



Credits:ESA/GAIA/DPAC-CU8-CU6 Recio-Blanco and the GSPspec team

# Galactic alchemists

dwarf

long life (billions of years)

sulfur

brief life (millions of years)

silicon

#### **Different nucleosynthetic channels**

Big Bang fusion 2 He 1 H Cosmic ray fission Gaia RVS element abundances Exploding massive stars 3 Li 10 Exploding white dwarfs 5 B Ne Be F Merging neutron stars Dying low-mass stars 18 Ar Very radioactive isotopes; nothing left from stars CI Na AI S 33 30 Zn 31 34 35 36 Cu Cr Ni Mn Fe Co Ga Ge As Se Br Kr 52 Te 39 45 49 50 54 43 48 51 53 37 38 42 46 Pd 47 44 Mo Cd Rb Sr Zr Tc Ru Rh Sb Nb Ag In Sn 1 Xe 55 56 72 Hf 73 **Ta** 74 W 86 75 78 Pt 80 81 82 83 84 85 76 77 79 Cs Re Os lr. Au Hg Ti Pb Bi Po At Rn Ba 88 87 Fr Ra 60 Nd 62 63 68 69 71 61 64 65 66 67 70 Tb Yb Pr Pm Sm Eu Dy Но Er Tm La Ce Gd Lu Adapted from 89 94 91 92 93 90 J. A. Johnson U Np Pa Ac Th Pu type II supernova type la supernova oxygen magnesium traces of other credits C. Chiappini iron elements red giant massive white



## A star's life cyle



# Gaia DPAC

#### CU8/GSPspec: The chemical composition of 5.6 million stars





#### CU8/GSPspec: The chemical composition of 5.6 million stars



### Gaia/RVS: a model driven success







-4

-5

-3

-2 -1

[M/H] (dex)

0

1

0

1

-4

[M/H] (dex)

-5

| Elt   | λ       | $\lambda_{ab}^{-}$ | $\lambda_{ab}^+$ | $\lambda_{norm}^{-}$ | $\lambda_{norm}^+$ |
|-------|---------|--------------------|------------------|----------------------|--------------------|
| Νı    | 863.161 | 863.071            | 863.281          | 862.891              | 863.371            |
| Νı    | 868.579 | 868.489            | 868.699          | 868.309              | 868.939            |
| Mgı   | 847.602 | 847.512            | 847.692          | 847.212              | 847.812            |
| Siı   | 853.851 | 853.731            | 853.941          | 853.371              | 854.961            |
| *Si 1 | 855.916 | 855.856            | 856.036          | 855.376              | 856.156            |
| Si 1  | 868.872 | 868.782            | 868.992          | 868.602              | 869.232            |
| *S 1  | 867.258 | 866.988            | 867.378          | 866.898              | 867.998            |
| *S 1  | 869.701 | 869.551            | 869.821          | 869.281              | 869.971            |
| Сат   | 863.631 | 863.511            | 863.691          | 863.361              | 863.931            |
| Сап   | 849.856 | 849.706            | 849.976          | 849.586              | 850.276            |
| Сап   | 850.216 | 850.156            | 850.276          | 849.886              | 850.306            |
| Сап   | 854.264 | 854.114            | 854.384          | 853.544              | 854.864            |
| Сап   | 854.624 | 854.564            | 854.744          | 854.294              | 854.804            |
| Сап   | 866.272 | 866.152            | 866.332          | 866.002              | 866.572            |
| Сап   | 866.632 | 866.512            | 866.692          | 866.302              | 866.782            |
| *Ti 1 | 852.069 | 851.979            | 852.129          | 851.799              | 852.249            |
| Ti 1  | 857.209 | 857.119            | 857.269          | 856.999              | 857.359            |
| Ti 1  | 869.472 | 869.382            | 869.562          | 869.292              | 869.832            |
| Cr ı  | 855.118 | 855.058            | 855.208          | 854.878              | 855.478            |
| Crı   | 864.567 | 864.447            | 864.627          | 864.207              | 864.867            |
| *Fe I | 848.296 | 848.206            | 848.446          | 847.666              | 848.896            |
| *Fe 1 | 851.641 | 851.551            | 851.851          | 851.281              | 852.001            |
| *Fe 1 | 852.901 | 852.691            | 853.081          | 852.481              | 853.321            |
| Fe 1  | 857.416 | 857.296            | 857.506          | 856.876              | 858.166            |
| Fe 1  | 858.462 | 858.312            | 858.612          | 858.132              | 858.762            |
| Fe 1  | 862.397 | 862.277            | 862.517          | 862.127              | 862.697            |
| Fe 1  | 867.713 | 867.593            | 867.863          | 867.443              | 868.013            |
| *Fe 1 | 869.101 | 868.891            | 869.191          | 868.441              | 869.821            |
| Fe п  | 858.794 | 858.764            | 858.824          | 858.254              | 859.274            |
| Ni 1  | 863.937 | 863.847            | 864.027          | 863.697              | 864.147            |
| Zr II | 852.748 | 852.658            | 852.838          | 852.388              | 853.018            |
| *Се п | 851.375 | 851.285            | 851.465          | 851.015              | 851.555            |
| Nd п  | 859.389 | 859.299            | 859.479          | 859.209              | 859.689            |

#### **MARCS** atmosphere models + turbospectrum

# **Comparison with Literature: Teff**

### Literature: APOGEE DR17, GALAH-DR3, RAVE-DR6

In grey: Medium quality sample In Green: Best quality sample (Will be explained later)



# **Comparison with Literature: logg !**

### Literature: APOGEE DR17, GALAH-DR3, RAVE-DR6

In grey: Medium quality sample In Green: Best quality sample (Will be explained later)

**Bias detected.** Solution: calibration



# **Comparison with Literature: [M/H]**

### Literature: APOGEE DR17, GALAH-DR3, RAVE-DR6

In grey: Medium quality sample In Green: Best quality sample (Will be explained later)

Apparently no bias on average, but **slightly subestimated** (**overestimated**) metallicities are found for **giants** (**dwarfs**)



### **CU8/GSPspec: Offset corrections (parameters)**



**Fig. 13.** Metallicity bias with respect to the literature as a function of log(g) for the open cluster stars, excluding dwarfs with S/N lower than 50. The colour code used for each cluster is indicated in the legend. Solid blue line corresponds to the general metallicity correction while the black line refers to that specifically obtained from the open clusters.

CU8/GSPspec: Comparison with ground-based surveys

[Ca/Fe]



Gaia

[Ce/Fe]

 $X_{Calibr} = X_{Uncalibr} + p_0 + p_1 \log(g) + p_2 \log(g)^2 + p_3 \log(g)^3 + p_4 \log(g)^4$ 

|                     | Element              | $p_0$    | $p_1$      | $p_2$             | $p_3$                | $p_4$  | Recommen                     | ded interval      | extrapol nag |
|---------------------|----------------------|----------|------------|-------------------|----------------------|--------|------------------------------|-------------------|--------------|
| Full table in       |                      |          | As a fu    | inction of lo     | g(g)                 |        | $\operatorname{Min} \log(g)$ | $Max \log(g)$     |              |
|                     | $[\alpha/\text{Fe}]$ | -0.5809  | 0.7018     | -0.2402           | 0.0239               | 0.0000 | 1.01                         | 4.85              | 0            |
| <b>Recio-Blanco</b> | [Ca/Fe]              | -0.6250  | 0.7558     | -0.2581           | 0.0256               | 0.0000 | 1.01                         | 4.85              | 0            |
|                     | [Mg/Fe]              | -0.7244  | 0.3779     | -0.0421           | -0.0038              | 0.0000 | 1.30                         | 4.38              | 0            |
| et al. (2023)       | [S/Fe]               | -17.6080 | 12.3239    | -2.8595           | 0.2192               | 0.0000 | 3.38                         | 4.81              | 0            |
|                     | [Si/Fe]              | -0.3491  | 0.3757     | -0.1051           | 0.0092               | 0.0000 | 1.28                         | 4.85              | 0            |
|                     | [Ti/Fe]              | -0.2656  | 0.4551     | -0.1901           | 0.0209               | 0.0000 | 1.01                         | 4.39              | 0            |
|                     | [Cr/Fe]              | -0.0769  | -0.1299    | 0.1009            | -0.0200              | 0.0000 | 1.01                         | 4.45              | 0            |
|                     | [Fe I/H]             | 0.3699   | -0.0680    | 0.0028            | -0.0004              | 0.0000 | 1.01                         | 4.85              | 0            |
|                     | [Fe II/H]            | 35.5994  | -27.9179   | 7.1822            | -0.6086              | 0.0000 | 3.53                         | 4.82              | 0            |
|                     | [Ni/Fe]              | -0.2902  | 0.4066     | -0.1313           | 0.0105               | 0.0000 | 1.41                         | 4.81              | 0            |
|                     | [N/Fe]               | 0.0975   | -0.0293    | 0.0238            | -0.0071              | 0.0000 | 1.21                         | 4.79              | 0            |
|                     | $[\alpha/\text{Fe}]$ | -0.2838  | 0.3713     | -0.1236           | 0.0106               | 0.0002 | 0.84                         | 4.44              | ≤ 1          |
|                     | [Ca/Fe]              | -0.3128  | 0.3587     | -0.0816           | -0.0066              | 0.0020 | 0.84                         | 4.98              | $\leq 1$     |
|                     |                      |          | As a funct | tion of $t = T_0$ | <sub>eff</sub> /5750 |        | Min $T_{\rm eff}$            | Max $T_{\rm eff}$ |              |
|                     | $[\alpha/\text{Fe}]$ | -6.6960  | 20.8770    | -21.0976          | 6.8313               | 0.0000 | 4000                         | 6830              | ≤ 1          |
|                     | [Ca/Fe]              | -7.4577  | 23.2759    | -23.6621          | 7.7657               | 0.0000 | 4000                         | 6830              | $\leq 1$     |
|                     | [S/Fe]               | 0.1930   | -0.2234    | 0.0000            | 0.0000               | 0.0000 | 5700                         | 6800              | $\leq 1$     |

 $X_{Calibr} = X_{Uncalibr} + p_0 + p_1 \log(g) + p_2 \log(g)^2 + p_3 \log(g)^3 + p_4 \log(g)^4$ 

|               | Element                           | $p_0$    | $p_1$     | $p_2$             | $p_3$                | $p_4$  | Recommen                     | ded interval      | <i>extrapol</i> flag |
|---------------|-----------------------------------|----------|-----------|-------------------|----------------------|--------|------------------------------|-------------------|----------------------|
| Full table in |                                   |          | As a fu   | inction of lo     | g(g)                 |        | $\operatorname{Min} \log(g)$ | $Max \log(g)$     |                      |
|               | $[\alpha/\text{Fe}]$              | -0.5809  | 0.7018    | -0.2402           | 0.0239               | 0.0000 | 1.01                         | 4.85              | 0                    |
| Recio-Blanco  | [Ca/Fe]                           | -0.6250  | 0.7558    | -0.2581           | 0.0256               | 0.0000 | 1.01                         | 4.85              | 0                    |
|               | [Mg/Fe]                           | -0.7244  | 0.3779    | -0.0421           | -0.0038              | 0.0000 | 1.30                         | 4.38              | 0                    |
| et al. (2023) | [S/Fe]                            | -17.6080 | 12.3239   | -2.8595           | 0.2192               | 0.0000 | 3.38                         | 4.81              | 0                    |
|               | [Si/Fe]                           | -0.3491  | 0.3757    | -0.1051           | 0.0092               | 0.0000 | 1.28                         | 4.85              | 0                    |
|               | [Ti/Fe]                           | -0.2656  | 0.4551    | -0.1901           | 0.0209               | 0.0000 | 1.01                         | 4.39              | 0                    |
|               | [Cr/Fe]                           | -0.0769  | -0.1299   | 0.1009            | -0.0200              | 0.0000 | 1.01                         | 4.45              | 0                    |
|               | [Fe I/H]                          | 0.3699   | -0.0680   | 0.0028            | -0.0004              | 0.0000 | 1.01                         | 4.85              | 0                    |
|               | [Fe II/H]                         | 35.5994  | -27.9179  | 7.1822            | -0.6086              | 0.0000 | 3.53                         | 4.82              | 0                    |
| Out of this   | [Ni/Fe]                           | -0.2902  | 0.4066    | -0.1313           | 0.0105               | 0.0000 | 1.41                         | 4.81              | 0                    |
| range keen    | [N/Fe]                            | 0.0975   | -0.0293   | 0.0238            | -0.0071              | 0.0000 | 1.21                         | 4.79              | 0                    |
|               | $\left[\alpha/\mathrm{Fe}\right]$ | 0 2838   | 0 3713    | 0 1236            | 0106                 | 0.0002 | 0.84                         | 4.44              | ≤1                   |
| the edge      | [Ca/Fe]                           | -0.3128  | 0.3387    | -0.0810           |                      | 0.0020 | 0.84                         | 4.98              | ≤1                   |
| values        |                                   |          | As a func | tion of $t = T_e$ | <sub>eff</sub> /5750 |        | Min $T_{\rm eff}$            | Max $T_{\rm eff}$ |                      |
| (suggestion)  | $[\alpha/\text{Fe}]$              | -6.6960  | 20.8770   | -21.0976          | 6.8313               | 0.0000 | 4000                         | 6830              | ≤1                   |
| (suggestion)  | [Ca/Fe]                           | -7.4577  | 23.2759   | -23.6621          | 7.7657               | 0.0000 | 4000                         | 6830              | ≤ 1                  |
|               | [S/Fe]                            | 0.1930   | -0.2234   | 0.0000            | 0.0000               | 0.0000 | 5700                         | 6800              | $\leq 1$             |
|               |                                   |          |           |                   |                      |        |                              |                   |                      |

 $X_{Calibr} = X_{Uncalibr} + p_0 + p_1 \log(g) + p_2 \log(g)^2 + p_3 \log(g)^3 + p_4 \log(g)^4$ 

|          | Element              | $p_0$    | $p_1$      | $p_2$               | <i>p</i> <sub>3</sub> | $p_4$  | Recommen                     | ded interval      | extrapol flag |
|----------|----------------------|----------|------------|---------------------|-----------------------|--------|------------------------------|-------------------|---------------|
| h        |                      |          | As a fu    | nction of lo        | g(g)                  |        | $\operatorname{Min} \log(g)$ | $Max \log(g)$     |               |
| I        | $[\alpha/\text{Fe}]$ | -0.5809  | 0.7018     | -0.2402             | 0.0239                | 0.0000 | 1.01                         | 4.85              | 0             |
| າດດ      | [Ca/Fe]              | -0.6250  | 0.7558     | -0.2581             | 0.0256                | 0.0000 | 1.01                         | 4.85              | 0             |
|          | [Mg/Fe]              | -0.7244  | 0.3779     | -0.0421             | -0.0038               | 0.0000 | 1.30                         | 4.38              | 0             |
| 3)       | [S/Fe]               | -17.6080 | 12.3239    | -2.8595             | 0.2192                | 0.0000 | 3.38                         | 4.81              | 0             |
| <b>^</b> | [Si/Fe]              | -0.3491  | 0.3757     | -0.1051             | 0.0092                | 0.0000 | 1.28                         | 4.85              | 0             |
|          | [Ti/Fe]              | -0.2656  | 0.4551     | -0.1901             | 0.0209                | 0.0000 | 1.01                         | 4.39              | 0             |
|          | [Cr/Fe]              | -0.0769  | -0.1299    | 0.1009              | -0.0200               | 0.0000 | 1.01                         | 4.45              | 0             |
|          | [Fe I/H]             | 0.3699   | -0.0680    | 0.0028              | -0.0004               | 0.0000 | 1.01                         | 4.85              | 0             |
|          | [Fe п/H]             | 35.5994  | -27.9179   | 7.1822              | -0.6086               | 0.0000 | 3.53                         | 4.82              | 0             |
|          | [Ni/Fe]              | -0.2902  | 0.4066     | -0.1313             | 0.0105                | 0.0000 | 1.41                         | 4.81              | 0             |
| _        | [N/Fe]               | 0.0975   | 0.0293     | 0.0238              | 0.0071                | 0.0000 | 1.21                         | 4.79              | Û             |
|          | $[\alpha/\text{Fe}]$ | -0.2838  | 0.3713     | -0.1236             | 0.0106                | 0.0002 | 0.84                         | 4.44              | ≤ 1           |
|          | [Ca/Fe]              | -0.3128  | 0.3587     | -0.0816             | -0.0066               | 0.0020 | 0.84                         | 4.98              | ≤ 1           |
|          |                      |          | As a funct | tion of $t = T_{e}$ | eff/5750              |        | $Min T_{eff}$                | Max $T_{\rm eff}$ |               |
|          | $[\alpha/\text{Fe}]$ | -6.6960  | 20.8770    | -21.0976            | 6.8313                | 0.0000 | 4000                         | 6830              | ≤1            |
|          | [Ca/Fe]              | -7.4577  | 23.2759    | -23.6621            | 7.7657                | 0.0000 | 4000                         | 6830              | ≤ 1           |
|          | [S/Fe]               | 0.1930   | -0.2234    | 0.0000              | 0.0000                | 0.0000 | 5700                         | 6800              | ≤ 1           |

### Full table in Recio-Blanco et al. (2023)

 $X_{Calibr} = X_{Uncalibr} + p_0 + p_1 \log(g) + p_2 \log(g)^2 + p_3 \log(g)^3 + p_4 \log(g)^4$ 

|    | Element              | $p_0$    | $p_1$      | $p_2$               | <i>p</i> <sub>3</sub> | $p_4$  | Recommen                     | ded interval      | extrapol flag |
|----|----------------------|----------|------------|---------------------|-----------------------|--------|------------------------------|-------------------|---------------|
|    |                      |          | As a fu    | nction of lo        | <b>g</b> ( <i>g</i> ) |        | $\operatorname{Min} \log(g)$ | $Max \log(g)$     |               |
|    | $[\alpha/\text{Fe}]$ | -0.5809  | 0.7018     | -0.2402             | 0.0239                | 0.0000 | 1.01                         | 4.85              | 0             |
| CO | [Ca/Fe]              | -0.6250  | 0.7558     | -0.2581             | 0.0256                | 0.0000 | 1.01                         | 4.85              | 0             |
|    | [Mg/Fe]              | -0.7244  | 0.3779     | -0.0421             | -0.0038               | 0.0000 | 1.30                         | 4.38              | 0             |
| )  | [S/Fe]               | -17.6080 | 12.3239    | -2.8595             | 0.2192                | 0.0000 | 3.38                         | 4.81              | 0             |
| -  | [Si/Fe]              | -0.3491  | 0.3757     | -0.1051             | 0.0092                | 0.0000 | 1.28                         | 4.85              | 0             |
|    | [Ti/Fe]              | -0.2656  | 0.4551     | -0.1901             | 0.0209                | 0.0000 | 1.01                         | 4.39              | 0             |
|    | [Cr/Fe]              | -0.0769  | -0.1299    | 0.1009              | -0.0200               | 0.0000 | 1.01                         | 4.45              | 0             |
|    | [Fe I/H]             | 0.3699   | -0.0680    | 0.0028              | -0.0004               | 0.0000 | 1.01                         | 4.85              | 0             |
|    | [Fe п/H]             | 35.5994  | -27.9179   | 7.1822              | -0.6086               | 0.0000 | 3.53                         | 4.82              | 0             |
|    | [Ni/Fe]              | -0.2902  | 0.4066     | -0.1313             | 0.0105                | 0.0000 | 1.41                         | 4.81              | 0             |
|    | [N/Fe]               | 0.0975   | -0.0293    | 0.0238              | -0.0071               | 0.0000 | 1.21                         | 4.79              | 0             |
|    | $[\alpha/\text{Fe}]$ | -0.2838  | 0.3713     | -0.1236             | 0.0106                | 0.0002 | 0.84                         | 4.44              | ≤ 1           |
|    | [Ca/Fe]              | -0.3128  | 0.3587     | -0.0816             | -0.0066               | 0.0020 | 0.84                         | 4.98              | < 1           |
|    |                      |          | As a funct | tion of $t = T_{a}$ | eff/5750              |        | Min $T_{\rm eff}$            | Max $T_{\rm eff}$ |               |
|    | $[\alpha/\text{Fe}]$ | -6.6960  | 20.8770    | -21.0976            | 6.8313                | 0.0000 | 4000                         | 6830              | ≤1            |
|    | [Ca/Fe]              | -7.4577  | 23.2759    | -23.6621            | 7.7657                | 0.0000 | 4000                         | 6830              | $\leq 1$      |
|    | [S/Fe]               | 0.1930   | -0.2234    | 0.0000              | 0.0000                | 0.0000 | 5700                         | 6800              | $\leq 1$      |

### Full table in Recio-Blanco et al. (2023)

# **Family of GSP-Spec Flags**

Considered

Chain character

**Parameters** flags

|              | Chain character | Considered                                     | Possible       | Related              |
|--------------|-----------------|------------------------------------------------|----------------|----------------------|
|              | number - name   | quality aspect                                 | adopted values | subsection and table |
|              | 1 vbroadT       | vbroad induced bias in $T_{\rm eff}$           | 0,1,2,9        | 8.1 & C.1            |
|              | 2 vbroadG       | vbroad induced bias in $log(g)$                | 0,1,2,9        | 8.1 & C.1            |
|              | 3 vbroadM       | vbroad induced bias in [M/H]                   | 0,1,2,9        | 8.1 & C.1            |
| arameters I  | 4 vradT         | vrad induced bias in $T_{\rm eff}$             | 0,1,2,9        | 8.2 & C.2            |
|              | 5 vradG         | vrad induced bias in $log(g)$                  | 0,1,2,9        | 8.2 & C.2            |
|              | 6 vradM         | vrad induced bias in [M/H]                     | 0,1,2,9        | 8.2 & C.2            |
| tlags S      | 7 fluxNoise     | flux noise uncertainties                       | 0,1,2,3,4,5,9  | 8.3 & C.3, C.4       |
| nago         | 8 extrapol      | extrapolation                                  | 0,1,2,3,4,9    | 8.4 & C.5, C.6       |
|              | 9 negFlux       | negative flux pixels                           | 0,9            | 8.5 & C.7            |
|              | 10 nanFlux      | NaN flux pixels                                | 0,1,9          | 8.5 & C.7            |
|              | 11 emission     | emission line                                  | 0,1,9          | 8.5 & C.7            |
|              | 12 nullFluxErr  | null uncertainties                             | 0,1,9          | 8.5 & C.7            |
|              | 13 KMgiantPar   | KM-type giant stars                            | 0,1,2,9        | 8.6 & C.8            |
|              | 14 NUpLim       | Nitrogen abundance upper limit                 | 0.1.2.9        | 8.7 & C.9            |
|              | 15 NUncer       | Nitrogen abundance uncertainty quality         | 0.1.2.9        | 8.7 & C.10           |
|              | 16 MgUnLim      | Magnesium abundance upper limit                | 0.1.2.9        | 8.7 & C.9            |
|              | 17 MgUncer      | Magnesium abundance uncertainty quality        | 0.1.2.9        | 8.7 & C.10           |
|              | 18 SiUpLim      | Silicon abundance upper limit                  | 0.1.2.9        | 8.7 & C.9            |
|              | 19 SiUncer      | Silicon abundance uncertainty quality          | 0.1.2.9        | 8.7 & C.10           |
|              | 20 SUpLim       | Sulphur abundance upper limit                  | 0.1.2.9        | 8.7 & C.9            |
|              | 21 SUncer       | Sulphur abundance uncertainty quality          | 0.1.2.9        | 8.7 & C.10           |
|              | 22 CaUpLim      | Calcium abundance upper limit                  | 0.1.2.9        | 8.7 & C.9            |
|              | 23 CaUncer      | Calcium abundance uncertainty quality          | 0.1.2.9        | 8.7 & C.10           |
|              | 24 TiUpLim      | Titanium abundance upper limit                 | 0.1.2.9        | 8.7 & C.9            |
| Abundance J  | 25 TiUncer      | Titanium abundance uncertainty quality         | 0.1.2.9        | 8.7 & C.10           |
|              | 26 CrUpLim      | Chromium abundance upper limit                 | 0.1.2.9        | 8.7 & C.9            |
| <b>CI S</b>  | 27 CrUncer      | Chromium abundance uncertainty quality         | 0.1.2.9        | 8.7 & C.10           |
| tiads N      | 28 FeUpLim      | Neutral iron abundance upper limit             | 0.1.2.9        | 8.7 & C.9            |
| inage i      | 29 FeUncer      | Neutral iron abundance uncertainty quality     | 0.1.2.9        | 8.7 & C.10           |
|              | 30 FeIIUpLim    | Ionised iron abundance upper limit             | 0.1.2.9        | 8.7 & C.9            |
|              | 31 FeIIUncer    | Ionised iron abundance uncertainty quality     | 0.1.2.9        | 8.7 & C.10           |
|              | 32 NiUpLim      | Nickel abundance upper limit                   | 0.1.2.9        | 8.7 & C.9            |
|              | 33 NiUncer      | Nickel abundance uncertainty quality           | 0.1.2.9        | 8.7 & C.10           |
|              | 34 ZrUpLim      | Zirconium abundance upper limit                | 0.1.2.9        | 8.7 & C.9            |
|              | 35 ZrUncer      | Zirconium abundance uncertainty quality        | 0.1.2.9        | 8.7 & C.10           |
|              | 36 CeUpLim      | Cerium abundance upper limit                   | 0.1.2.9        | 8.7 & C.9            |
|              | 37 CeUncer      | Cerium abundance uncertainty quality           | 0,1,2,9        | 8.7 & C.10           |
|              | 38 NdUpLim      | Neodymium abundance upper limit                | 0.1.2.9        | 8.7 & C.9            |
|              | 39 NdUncer      | Neodymium abundance uncertainty quality        | 0.1.2.9        | 8.7 & C.10           |
|              | 40 DeltaCNg     | Cyanogen differential equivalent width quality | 0129           | <u>89&amp;C12</u>    |
| CN/DIR floor | Al DIRa         | DIB quality flag                               | 0,1,2,9        | 88 & C 13            |
|              |                 | DID quanty liag                                | 0,1,2,3,4,3,7  | 0.0 & C.15           |

To be used and adapted to your scientific goal

Related



## Full table in Recio-Blanco et al. (2023)

## **Family of GSP-Spec Flags**

#### **KM** flag

Problems with the molecular lines in the cool regime. Dependence of F<sub>min</sub>

Image: Kiel diagram colorcoded with density



# **Gaia DR3: 5.6 milion stars with chemo-physical parameters**

Spectroscopy

#### Recio-Blanco et al. 2022







Gaia Collaboration, Recio-Blanco et al. (2022)





Gaia Collaboration, Recio-Blanco et al. (2022)

## Gaia stellar populations

- 1. The Gaia revolution on Galactic stellar populations and its keys
- 2. The chemical cartography of the Milky Way
- 3. Gaia: "*Mesdames et messieurs, the stellar populations*"
  - Disc structure and chemical gradients
  - Disc kinematic disturbances
  - Halo populations





### THE H-R DIAGRAMME to dig into Milky Way stellar populations



### Galactic disc: landscapes

### **Selection function**







Gaia Collaboration, ARB et al. (2023)

### Galactic disc: structure and chemical gradients



**Global view of the disc : luminous RGB stars** 





We observe the disc vertical chemical gradient. Strong symmetry above/below the Galactic plane

Innermost spiral arm and bar
### Galactic disc: structure and chemical gradients

Young stellar populations in the spiral arms





The thin disc

- Radial chemical gradient -> precise quantification with different tracers
- The flare: the thin disc gets thicker as we move outwards



### Galactic disc: structure and chemical gradients

Young stellar populations in the spiral arms







We couple chemistry and orbits thanks to DR3 radial velocities Katz et al. (2023)



**From Arms** 

Poggio et al. 2022

High enough precision and nb statistics to select stars in different age bins.

### **Chemical signature of the Spiral Arms**

Poggio, ARB et al. (2022)





From a 1D radial gradient to ...

a 2D radial gradient

Chemical signature of the Spiral Arms



Poggio et al. (2022)



Age<1Gyr

Age>1Gyr



Marie Barbillon ( attending the EES!! )

Metallicity signatures of the spiral arms both in the young (Poggio et al. 2022) and the old population (Barbillon et al., in prep.)

The spiral arms signature is **visible in the relative abundance of α-elements with respect to iron.** 

The fluctuation in  $\alpha$ -elements is higher than in iron.

### **2D chemical evolution model**

Elements synthesised on short time scales (i.e., oxygen and europium) exhibit larger abundance fluctuations.







### Galactic disc: Open clusters







# 687 open clusters in the Gaia DR3 chemical database

Gaia Collaboration, Recio-Blanco et al. (2022)

### Galactic disc: Open clusters

### Prantzos et al. chemical evolution model

Multi-zone semi-analytical models + radial migration



THE [X/Fe] vs. [Fe/H] DIAGRAMME : chemical tracers of stellar populations

• A common diagnostic of precise abundances is the capability to chemically separate thin/thick disc populations in the [alpha/Fe] vs. [Fe/H]



### THE [X/Fe] vs. [Fe/H] DIAGRAMME : stellar populations chemical tracers



See for instance 1) **chemical evolution models :** Prantzos et al. (2023), Spitoni et al. (2023) 2) **GES data** (Mikolaitis et al. 2014), **APOGEE data** (Abdurro'uf et al. 2022), **etc...** 

### THE [X/Fe] vs. [Fe/H] DIAGRAMME : stellar populations chemical tracers



For high precision abundances

### Large separation if:

Mostly Short lived producers e.g. Mg [X/Fe]

Mostly long lived

Short lived Long lived Short lived Long lived

### THE [X/Fe] vs. [Fe/H] DIAGRAMME : stellar populations chemical tracers



For high precision abundances

### **Small separation** if:

e.g Ca

or Ti

Low long lived contribution

[X/Fe]

Mostly long lived

Short lived Long lived Short lived Long lived

# Thin/thick disc chemical bimodality

### The Gaia GSPspec global $\alpha$ diagnostic is dominated by the CaT lines: **GSPspec** [ $\alpha$ /Fe] $\simeq$ [Ca/Fe]



# Thin/thick disc chemical bimodality

### The Gaia GSPspec global $\alpha$ diagnostic is dominated by the CaT lines: **GSPspec** [ $\alpha$ /Fe] $\simeq$ [Ca/Fe]



# Thin/thick disc chemical bimodality

### But choosing [Mg/Fe] abundances with low uncertainties



Large thin/thick disc sequences separation, as expected...

and with only R=11 500 at 846 - 870 nm !!

# **Bimodal disc RBG and RC from high precision parameters**



### Galactic disc: structure and chemical gradients

# Vertical and radial cartography of [alpha/Fe] vs. [M/H] colour coded with Galactic azimuthal velocity





Thin disc stars are found at 3 kpc from the plane in the outer regions !



### Galactic disc: a young chemically impoverished population?

Young stellar populations in the spiral arms



Depletion consistent with other HR surveys (APOGEE)

Gaia

PAC

Spitoni et al. (2023)



NOTE: These are only the "massive stars" in the Solar Neighbourhood, with [Mg/Fe] and in common with APOGEE

### Galactic disc: a young chemically impoverished population?

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.00

-0.05

0.05 2 0.4

1.0

.0.8

Z 0.6

0.0

-1.2

0 2 4 6 8 10 12 14

-0.8

Age [Gvr



### Spitoni et al. models

Galaxy formed by separated accretion episodes, modelled by decaying exponential infalls of gas.

**Recent infall of gas** related to thin disc star formation history and chemically depleted young populations

Spitoni et al. (2023)

13.2 Gyr

12.7 Gyr

6.7 Gv

0.0

-0.4

[M/H]



# Chemo-dynamics with individual element abundances

Gaia collaboration, ARB et al. (2023)





### Galactic disc: structure and chemical gradients

#### **Heavy elements: Cerium** 3 Zmax (Kpc) 0.00 -1.00-0.750.000.25 0.50-0.50[M/H] (dex) 0.4 [Ce/Ca] (dex) 108 0.2 $\mathbf{R}_a$ (kpc) 0.0 0.10 0.15 0.20 0.25 0.30 0.00 0.05 [Ce/Fe] (dex) -0.20.2 0.0 [Ca/H] (dex)

Flat [Ce/Fe] radial gradient and positive vertical gradient Slightly possitive [Ce/Ca] trend vs. [Ca/H] -> AGB stars are the main responsibles for Cerium abundances in the disc.

Contursi et al. (2022)

## Heavy element abundances: Neodymium



#### Contursi et al. (2023)

### AGB production of s-process elements:

Higher Ce and Nd abundances for more evolved AGB stars of similar metallicity.

### **THE PHASE SPACE** : stellar populations in motion



PHASE SPIRAL







### Chemical markers of disc perturbations: Ridges in chemo-kinematical space





### Chemical markers of disc perturbations: kinematics and phase spiral as a function of R





Wave-like perturbation (Antoja et al. 2018):

- disc-crossing satellite (Binney & Schoenrich 2018, Bland-Hawthorn et al. 2019)
- bar's buckling (Koperskov et al. 2019)
- **Correlation** of thin disc phase spiral **with metallicity excess** detected for the first

time



### Chemical markers of disc perturbations: The outer disc





Kinematical bimodality (Gaia Collaboration, Antoja et al. 2021) linked to metallicity bimodality:

The population with lower Vφ is more metal-rich than the second group of stars with higher Vφ and positive VZ.

Crédits: Gaia Collaboration, Recio-Blanco et al. (2022)

### Chemical markers of disc perturbations: orbital space



The actions (*JR*, *JZ*, *LZ*) in static potentials are integrals of motion that characterise the orbit of the stars.

- JR characterises the radial amplitude of the epicyclic orbits
- the angular momentum Lz sets the guiding raidus a more robust estimate of the typical Galactic distance of the star than the present-day Galactocentric radius R.

### Chemical markers of disc perturbations: orbital space

**Ridges** of higher stellar density:

- orbits closer to the plane
- metallicities higher than surrounding median values.





### Spiral arms : signatures in density, metallicity and orbits



Palicio, ARB et al. (2022)

Radial action  $J_R \sim$  orbit's excentricity Lower  $J_R$  (red) means more circular

### Spiral-like structures in JR for (old) giant



Spiral arms : signatures in density, metallicity and orbits

**Correlation** of the JR pattern **with different spiral arms tracers** (in stellar density). **Spiral arms detected in the giant stars density distribution** 



Palicio, ARB et al. (2022)

### Chemical markers of satellite accretion



Çesa gaia

Accreted substructures identified in orbital space and in the chemical one



### Chemical markers of satellite accretion



### Accreted substructures identified in orbital space and in the chemical one



### Chemical markers of satellite accretion



### Accreted substructures identified in orbital space and in the chemical one


## Chemical markers of satellite accretion



### Accreted substructures identified in orbital space and in the chemical one



# Chemical markers of satellite accretion



#### Accreted substructures identified in orbital space and in the chemical one



# **Cerium abundances**:

Helmi Stream could be slightly underabundant in [Ce/Fe] with respect to Gaia-Enceladus and Thamnos

Contursi et al. (2022)

### **Globular clusters**





# Galactic fossils from primordial epochs





 Extremely metal-poor stars can be selected in the Gaia DR3 GSPspec table

Recio-Blanco et al. (2022)



# Conclusions

- The Gaia future is bright:
  - only ¼ of the data analysed in DR3!
  - o end of cold gas (operational phase) Jan-March 2025
  - RVS data SNR increasing
- Much larger chemo-dynamical catalogues to come:
  - o 5.6 million stars with chemo-physical parameters in DR3 (2022)
  - ~ 30 million stars in DR4 (end 2025)
  - ~100 million stars in DR5 (2030)
- Complementary ground based HR spectroscopy (WEAVE+4MOST) 5-10 million

# Conclusions

- Time-series chemo-physical parameters for cepheids and RRLyrae from DR4
- Standard candles will increase the precision of Gaia distances towards the bulge, the outer disc, the halo and the surrounding satellites.
- In 2030 Gaia will have recorded 10 years of the Milky Way history!
- Important to keep synergy with models and simulations, including in a cosmological context



# **Back up slides**

## Galactic disc: an analytical chemical model including Type Ia SN

Chemical evolution model integrated by extending the instantaneous recycling approximation with the contribution of Type Ia SNe



Extra term in the modelling depending on the Delay Time Distribution (DTD).

Four different DTDs are considered, either analyticaly or as a superposition of Gaussian, exponential and 1/*t* functions using a restricted least-squares fit.

### Galactic disc: an analytical chemical model including Type Ia SN

Used to model the chemical evolution of the GALACTICA Milky Way-like simulated galaxy (Park et al. 2021) from its star formation history.

Extracted from a zoom-in hydrodynamical simulation in a cosmological context (S. Peirani) spatial resolution and sub-grid models as in NewHorizon simulation as in Dubois et al. 2021.





# Gaia/RVS: high precision Kiel diagrams

# Gaia DPAC

### SNR>150 High quality parameter flags



Recio-Blanco et al. (2022)

# Gaia/RVS: a space spectroscopic survey



#### High quality spectra: continuous observations for 3 years, no atmosphere, control of systematics, ... Gaia is not a ground-based survey!

Absorption from interstellar dust molecules (DIB) on an individual spectrum basis





Recio-Blanco et al. (2022)



- General very good agreement\*
- The extreme homogeneity of Gaia RVS/GSPspec highlights literature inhomogeneity (in methods, models, reference data, uncertainty definitions, selection functions...)

\*GSP-Spec values are calibrated. Dotted line: inflated errors by a factor of 4